MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ G* = = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
- [ / . ω
G { f [dd]} ´[d] / . f [d] G* dd [G]
Os modelos atuais de cosmologia são baseados nas equações de campo de Einstein, que incluem a constante cosmológica , visto que esta exerce importante influência na dinâmica de larga escala do cosmos:
Na relatividade geral, o deslocamento do periélio σ, expresso em radianos por revolução, é dado aproximadamente por:[85]
onde
- é o semieixo maior
- é o período orbital
- é a velocidade da luz
- é a excentricidade orbital
Do lado esquerdo está o tensor de Einstein, uma combinação específica livre de divergência do tensor de Ricci e da métrica. Onde é simétrico. Em particular,
é a curvatura escalar. O próprio tensor de Ricci está relacionado com o tensor de curvatura de Riemann mais geral
Do lado direito, é o tensor energia-momento. Todos os tensores são escritos em notação de índices abstratos.[32] Combinando a previsão da teoria com resultados observacionais para órbitas planetárias ou, equivalentemente, assegurando que o limite de gravidade fraca e baixa velocidade é a mecânica newtoniana, a constante de proporcionalidade pode ser fixada como κ = 8πG/c4, com G a constante gravitacional e c a velocidade da luz.[33] Quando não há nenhuma matéria presente, de modo que o tensor de energia-momento desaparece, os resultados são as equações de vácuo de Einstein,
Alternativas à relatividade geral
Ver artigo principal: Teorias alternativas à relatividade geralExistem teorias alternativas à relatividade geral baseadas nas mesmas premissas, que incluem regras e/ou restrições adicionais, levando a diferentes equações de campo. Exemplos são a teoria de Whitehead, a teoria Brans-Dicke, o teleparalelismo, a gravidade de f(R) e a teoria de Einstein-Cartan.[34]
Definição e aplicações básicas
A derivação descrita na seção anterior contém todas as informações necessárias para definir a relatividade geral, descrever suas principais propriedades e abordar uma questão de importância crucial na física, ou seja, como a teoria pode ser usada para a construção de modelos.
Comments
Post a Comment